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Abstract

This note presents a collection of mathematical formulas involving the mathematical constant π.

1 Background

The mathematical constant known as π = 3.14159 . . . is undeniably the most famous mathematical constant.
Mathematicians since the days of Euclid and Archimedes have analyzed its properties and computed its
numerical value.

This is a collection of many of formulas that have been established by mathematicians over the years
involving π. Preference is given in this list for formulas that satisfy the following criteria:

• Formulas that give π (or a very simple expression involving π) explicitly, as opposed to implicit relations
such as eiπ + 1 = 0.

• Formulas that give π (or a very simple expression involving π) as a straightforward infinite series or
definite integral, as opposed to iterative algorithms or other multiple-formula schemes.

• Formulas that involve only simple notation (such as binomial coefficients, square roots, logs, summations,
integrals, etc.) that would be familiar to anyone who has completed a beginning course in calculus.

• Formulas that are relatively new (discovered say within the last 15 years) or have current research
interest.

Included in this listing are several classical infinite series for π that have actually have been used in
historical calculations of π (both before and since the invention of the computer). This includes formulas 2,
3 and 4 prior to the 20th century, and formulas 5 and 6 in the latter part of the 20th century (in addition to
some iterative algorithms not shown here).

Formulas 7 through 12 have the intriguing property that they permit digits (in certain specific bases)
of the constant specified on the left-hand side to be calculated beginning at an arbitrary starting position,
without having to calculate any of the digits that came before, by means of a relatively simple algorithm.
Indeed, Formulas 7 and 8 have been used in computations of binary digits of π by several researchers. In
the most recent such computation, binary digits of π beginning at position 2× 1015 were calculated. Details
are provided in [8, Sec 3.4–3.6]. Numerous similar recently-discovered formulas that posses the arbitrary
digit-computation property for various mathematical constants are catalogued in [2].

Many of these formulas are quite new, in the sense that they were discovered only in recent years. The
formulas mentioned in the previous paragraph are certainly in this category, having been discovered only in
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the past 10–15 years. Many of the formulas from 13 through 46 were not well known until recently. Formulas
57 through 60 are also relatively new, in the sense that they are part of a class of integral formulas that are
the subject of current research [3, 4, 5].

2 Credits

• Formula 1 was discovered by Leibniz and Gregory in the 1600s. Formula 2 was attributed to Euler in
1738. Formula 3 was discovered about the same time by Machin [8, pg. 105]. Formula 4 was discovered
by Newton in the 1600s.

• Formula 5 is due to Ramanujan, and was used by Gosper in 1986 to compute π to over 17 million digits.
The similar but more complicated Formula 6 is due to David and Gregory Chudnovsky, and was used
by them to compute π to over one billion decimal digits [8, pg. 108].

• Formula 7 is known as the “BBP” formula for π, named for the initials of the co-authors of the 1997
paper where it was first presented [6]. It was discovered by numerical methods, in particular by applying
the “PSLQ” algorithm of mathematician-sculptor Helaman Ferguson [13, 7]. Formula 8 is a variant of
the BBP formula due to Bellard [8, pg. 124]. Formula 9 was found by Helaman Ferguson.

• Formula 10 appeared in [6]. Formulas 11 and 12 are due to David Broadhurst [11].

• Some of the summation formulas involving factorials and combinatorial coefficients (i.e., formulas 13
through 45) were found by Ramanujan; others are due to David and Gregory Chudnovsky. The Chud-
novskys had these and many other formulas of this general type inscribed on the floor of their research
center at Brooklynn Polytechnic University in New York City [12]. Four exceptions are Formula 31,
which is due to Ramanujan but appeared in [10, pg. 188], Formulas 40 and 41, which are due to Guillera
[14], and 46, which is due to Almkvist and Guillera [1].

• Formulas 47 through 58 have been known for some time; they are from [9, pg. 5, 48, 320–321].

• Formula 59 is an example of numerous formulas of this general type recently discovered by computational
methods, typically involving the PSLQ algorithm [13, 7], in studies of Ising theory in mathematical
physics [3]. Formulas 60, 61 and 62 are examples of recent discoveries, also by computational methods
involving the PSLQ algorithm, in the theory of box integrals [4, 5]. Formula 59, for instance, can be
thought of as specifying the average distance between two points in the unit 3-cube.

3 Formulas
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